3.134 \(\int \sqrt{b \sqrt [3]{x}+a x} \, dx\)

Optimal. Leaf size=323 \[ -\frac{2 b^{9/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{5 a^{7/4} \sqrt{a x+b \sqrt [3]{x}}}-\frac{4 b^2 \sqrt [3]{x} \left (a x^{2/3}+b\right )}{5 a^{3/2} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{a x+b \sqrt [3]{x}}}+\frac{4 b^{9/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 a^{7/4} \sqrt{a x+b \sqrt [3]{x}}}+\frac{4 b \sqrt [3]{x} \sqrt{a x+b \sqrt [3]{x}}}{15 a}+\frac{2}{3} x \sqrt{a x+b \sqrt [3]{x}} \]

[Out]

(-4*b^2*(b + a*x^(2/3))*x^(1/3))/(5*a^(3/2)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[b*x^(1/3) + a*x]) + (4*b*x^(1/3)*
Sqrt[b*x^(1/3) + a*x])/(15*a) + (2*x*Sqrt[b*x^(1/3) + a*x])/3 + (4*b^(9/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b
 + a*x^(2/3))/(Sqrt[b] + Sqrt[a]*x^(1/3))^2]*x^(1/6)*EllipticE[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(5*a
^(7/4)*Sqrt[b*x^(1/3) + a*x]) - (2*b^(9/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b + a*x^(2/3))/(Sqrt[b] + Sqrt[a]
*x^(1/3))^2]*x^(1/6)*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(5*a^(7/4)*Sqrt[b*x^(1/3) + a*x])

________________________________________________________________________________________

Rubi [A]  time = 0.325712, antiderivative size = 323, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.533, Rules used = {2004, 2018, 2024, 2032, 329, 305, 220, 1196} \[ -\frac{4 b^2 \sqrt [3]{x} \left (a x^{2/3}+b\right )}{5 a^{3/2} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{a x+b \sqrt [3]{x}}}-\frac{2 b^{9/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 a^{7/4} \sqrt{a x+b \sqrt [3]{x}}}+\frac{4 b^{9/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 a^{7/4} \sqrt{a x+b \sqrt [3]{x}}}+\frac{4 b \sqrt [3]{x} \sqrt{a x+b \sqrt [3]{x}}}{15 a}+\frac{2}{3} x \sqrt{a x+b \sqrt [3]{x}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x^(1/3) + a*x],x]

[Out]

(-4*b^2*(b + a*x^(2/3))*x^(1/3))/(5*a^(3/2)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[b*x^(1/3) + a*x]) + (4*b*x^(1/3)*
Sqrt[b*x^(1/3) + a*x])/(15*a) + (2*x*Sqrt[b*x^(1/3) + a*x])/3 + (4*b^(9/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b
 + a*x^(2/3))/(Sqrt[b] + Sqrt[a]*x^(1/3))^2]*x^(1/6)*EllipticE[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(5*a
^(7/4)*Sqrt[b*x^(1/3) + a*x]) - (2*b^(9/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b + a*x^(2/3))/(Sqrt[b] + Sqrt[a]
*x^(1/3))^2]*x^(1/6)*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(5*a^(7/4)*Sqrt[b*x^(1/3) + a*x])

Rule 2004

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(x*(a*x^j + b*x^n)^p)/(n*p + 1), x] + Dist[(
a*(n - j)*p)/(n*p + 1), Int[x^j*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] &&  !IntegerQ[p] && LtQ[0,
 j, n] && GtQ[p, 0] && NeQ[n*p + 1, 0]

Rule 2018

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \sqrt{b \sqrt [3]{x}+a x} \, dx &=\frac{2}{3} x \sqrt{b \sqrt [3]{x}+a x}+\frac{1}{9} (2 b) \int \frac{\sqrt [3]{x}}{\sqrt{b \sqrt [3]{x}+a x}} \, dx\\ &=\frac{2}{3} x \sqrt{b \sqrt [3]{x}+a x}+\frac{1}{3} (2 b) \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )\\ &=\frac{4 b \sqrt [3]{x} \sqrt{b \sqrt [3]{x}+a x}}{15 a}+\frac{2}{3} x \sqrt{b \sqrt [3]{x}+a x}-\frac{\left (2 b^2\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{5 a}\\ &=\frac{4 b \sqrt [3]{x} \sqrt{b \sqrt [3]{x}+a x}}{15 a}+\frac{2}{3} x \sqrt{b \sqrt [3]{x}+a x}-\frac{\left (2 b^2 \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{x}}{\sqrt{b+a x^2}} \, dx,x,\sqrt [3]{x}\right )}{5 a \sqrt{b \sqrt [3]{x}+a x}}\\ &=\frac{4 b \sqrt [3]{x} \sqrt{b \sqrt [3]{x}+a x}}{15 a}+\frac{2}{3} x \sqrt{b \sqrt [3]{x}+a x}-\frac{\left (4 b^2 \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{5 a \sqrt{b \sqrt [3]{x}+a x}}\\ &=\frac{4 b \sqrt [3]{x} \sqrt{b \sqrt [3]{x}+a x}}{15 a}+\frac{2}{3} x \sqrt{b \sqrt [3]{x}+a x}-\frac{\left (4 b^{5/2} \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{5 a^{3/2} \sqrt{b \sqrt [3]{x}+a x}}+\frac{\left (4 b^{5/2} \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{a} x^2}{\sqrt{b}}}{\sqrt{b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{5 a^{3/2} \sqrt{b \sqrt [3]{x}+a x}}\\ &=-\frac{4 b^2 \left (b+a x^{2/3}\right ) \sqrt [3]{x}}{5 a^{3/2} \left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right ) \sqrt{b \sqrt [3]{x}+a x}}+\frac{4 b \sqrt [3]{x} \sqrt{b \sqrt [3]{x}+a x}}{15 a}+\frac{2}{3} x \sqrt{b \sqrt [3]{x}+a x}+\frac{4 b^{9/4} \left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right ) \sqrt{\frac{b+a x^{2/3}}{\left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 a^{7/4} \sqrt{b \sqrt [3]{x}+a x}}-\frac{2 b^{9/4} \left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right ) \sqrt{\frac{b+a x^{2/3}}{\left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{5 a^{7/4} \sqrt{b \sqrt [3]{x}+a x}}\\ \end{align*}

Mathematica [C]  time = 0.0537649, size = 94, normalized size = 0.29 \[ \frac{2 \sqrt [3]{x} \sqrt{a x+b \sqrt [3]{x}} \left (\left (a x^{2/3}+b\right ) \sqrt{\frac{a x^{2/3}}{b}+1}-b \, _2F_1\left (-\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{a x^{2/3}}{b}\right )\right )}{3 a \sqrt{\frac{a x^{2/3}}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x^(1/3) + a*x],x]

[Out]

(2*x^(1/3)*Sqrt[b*x^(1/3) + a*x]*((b + a*x^(2/3))*Sqrt[1 + (a*x^(2/3))/b] - b*Hypergeometric2F1[-1/2, 3/4, 7/4
, -((a*x^(2/3))/b)]))/(3*a*Sqrt[1 + (a*x^(2/3))/b])

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 207, normalized size = 0.6 \begin{align*}{\frac{2\,x}{3}\sqrt{b\sqrt [3]{x}+ax}}+{\frac{4\,b}{15\,a}\sqrt [3]{x}\sqrt{b\sqrt [3]{x}+ax}}-{\frac{2\,{b}^{2}}{5\,{a}^{2}}\sqrt{-ab}\sqrt{{a \left ( \sqrt [3]{x}+{\frac{1}{a}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-2\,{\frac{a}{\sqrt{-ab}} \left ( \sqrt [3]{x}-{\frac{\sqrt{-ab}}{a}} \right ) }}\sqrt{-{a\sqrt [3]{x}{\frac{1}{\sqrt{-ab}}}}} \left ( -2\,{\frac{\sqrt{-ab}}{a}{\it EllipticE} \left ( \sqrt{{\frac{a}{\sqrt{-ab}} \left ( \sqrt [3]{x}+{\frac{\sqrt{-ab}}{a}} \right ) }},1/2\,\sqrt{2} \right ) }+{\frac{1}{a}\sqrt{-ab}{\it EllipticF} \left ( \sqrt{{a \left ( \sqrt [3]{x}+{\frac{1}{a}\sqrt{-ab}} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) } \right ){\frac{1}{\sqrt{b\sqrt [3]{x}+ax}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^(1/3)+a*x)^(1/2),x)

[Out]

2/3*x*(b*x^(1/3)+a*x)^(1/2)+4/15*b*x^(1/3)*(b*x^(1/3)+a*x)^(1/2)/a-2/5/a^2*b^2*(-a*b)^(1/2)*((x^(1/3)+1/a*(-a*
b)^(1/2))*a/(-a*b)^(1/2))^(1/2)*(-2*(x^(1/3)-1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2)*(-x^(1/3)*a/(-a*b)^(1/2))
^(1/2)/(b*x^(1/3)+a*x)^(1/2)*(-2/a*(-a*b)^(1/2)*EllipticE(((x^(1/3)+1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2),1/
2*2^(1/2))+1/a*(-a*b)^(1/2)*EllipticF(((x^(1/3)+1/a*(-a*b)^(1/2))*a/(-a*b)^(1/2))^(1/2),1/2*2^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a x + b x^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*x + b*x^(1/3)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{a x + b x^{\frac{1}{3}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(a*x + b*x^(1/3)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a x + b \sqrt [3]{x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**(1/3)+a*x)**(1/2),x)

[Out]

Integral(sqrt(a*x + b*x**(1/3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a x + b x^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^(1/3)+a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*x + b*x^(1/3)), x)